Experimental analysis of the thermal behavior of concrete

Author:

Zatir SaraORCID,Rahal NacerORCID,Beghdad HoudaORCID,Souici AbdelazizORCID,Aouad Halima,Benmahdi KhaledORCID

Abstract

Introduction/purpose: When concrete structural members are subjected to fire and then exposed to slow or rapid cooling, there are various changes affecting density, porosity, thermal damage, speed of sound propagation, modulus of elasticity, compressive strength, absorptivity, etc. The heavy use of concrete to build structures on the one hand and the problem of fires on the other require a deep understanding of the effect of fire on the structural behavior of concrete, especially after cooling. So far, the two cooling methods used to put out a possible fire have been water and free air. Our objective is to experimentally analyze the use of the extinguisher as the third method of cooling concrete exposed to high temperatures. Methods: To achieve our objective, a series of mechanical and physical tests waw carried out on specimens 40 mm in diameter and 40 mm in height, exposed to high temperatures of 200, 400, and 600 °C. These test samples were then subjected to three different cooling regimes, namely: free air, water immersion, and extinguisher use. Results: The results clearly show that the use of the extinguisher is more appropriate than the other two cooling methods, namely, natural cooling and immersion in water. Conclusion: The results from this experimental study could be of practical use when trying to extinguish a possible fire in a concrete structure.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Engineering

Reference46 articles.

1. ACI (American Concrete Institute). 1989. 216R-89: Guide for Determining the Fire Endurance of Concrete Elements (Reapproved 2001) [online]. Available at: https://www.concrete.org/store/productdetail.aspx?ItemID=21689&Format=DOW NLOAD&Language=English&Units=US_Units [Accessed: 05 September 2023];

2. ACI (American Concrete Institute). 2007. ACI 216.1-07/TMS-216-07 Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. An ACI/TMS Standard. Reported by Joint ACI-TMS Committee 216 [online]. Available at: https://www.concrete.org/portals/0/files/pdf/previews/216107_bkstore_view.pdf [Accessed: 05 September 2023];

3. ACI (American Concrete Institute). 2008. Building Code Requirements For Reinforced Concrete and Commentary (ACI 318). Farmington Hills, Michigan, USA: American Concrete Institute;

4. Akçaözoğlu, K. 2013. Microstructural examination of concrete exposed to elevated temperature by using plane polarized transmitted light method. Construction and Building Materials, 48, pp.772-779. Available at: https://doi.org/10.1016/j.conbuildmat.2013.06.059;

5. Annerel, E. & Taerwe L. 2009. Revealing the temperature history in concrete after fire exposure by microscopic analysis. Cement and Concrete Research, 39(12), pp.1239-1249. Available at: https://doi.org/10.1016/j.cemconres.2009.08.017;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3