Maximum electric field estimation in the vicinity of 5G base stations before their start-up

Author:

Lebl AleksandarORCID,Budimir ĐurađORCID

Abstract

Introduction/purpose: This paper presents initial development of the procedure for electric field estimation in the vicinity of 5G base stations. Methods: The procedure allows determination of future radiation levels before traffic is established over applied antenna systems on the basis of measured values of electric field levels caused by the signal forming Synchronization Signal Block. It is possible to perform necessary calculations for a very accurate estimation even if some important parameters of the radiation characteristics (such as the frequency span between the frequency carriers on the radio interface) are not a priori known. In this way, communication with mobile system operators before measurement is significantly simplified because operators do not need to know system technical details. Results: The developed formula for electric field estimation is verified comparing the calculated values by its implementation to the practical results obtained by intensive measurements on a great number of 5G base stations in a highly developed country. The formula gives a pessimistic result, i.e. a higher electric field level than it is obtained by all such performed measurements. Conclusion: This estimation allows mobile system operators to predict whether the electromagnetic field around base stations could be dangerous for human health when systems come to full operation while considering national and international recommendations dealing with radiation levels.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Engineering

Reference29 articles.

1. Adda, S., Aureli, T., D'Elia, S., Franci, D., Grillo, E., Migliore, M.D., Pavoncello, S., Schettino, F. & Suman, R. 2020. A Theoretical and Experimental Investigation on the Measurement of the Electromagnetic Field Level Radiated by 5G Base Station. IEEE Access, 8, pp.101448-101463. Available at: https://doi.org/10.1109/ACCESS.2020.2998448;

2. Agence nationale des fréquences (ANFR). 2020. Assessment of the exposure of the general public to 5G electromagnetic waves, Part 2: first measurement results on 5G pilots in the 3,400-3,800 MHz band, First exposure measurement results on 5G 3.4 GHz -3.8 GHz pilots [online]. Available at: https://www.anfr.fr/fileadmin/mediatheque/documents/5G/20200410-ANFRrapport-mesures-pilotes-5G-EN.pdf [Accessed: 20 January 2023];

3. Bieńkowski, P.P., Cała, P.M. & Zubrzak, B. 2015. Optimization of measurement methods for a multi-freque electromagnetic field from mobile phone base station using broadband EMF meter. Medycyna Pracy, 66(5), pp.701-712. Available at: https://doi.org/10.13075/mp.5893.00206;

4. Biscontini, B. 2021. Recommendation on Base Station Active Antenna System Standards, version 2.0. NGMN Alliance [online]. Available at: https://www.ngmn.org/publications/recommendation-on-base-station-activeantenna-system-standards.html [Accessed: 20 January 2023];

5. Conil, E. & Agnani, J.-B. 2020. Evaluation of exposure induced by a 5G antenna in the 3,4-3,8 GHz band, Future Networks: 5G and beyond. U.R.S.I. France [online]. Available at: https://ursifr2020.sciencesconf.org/306820/document [Accessed: 20 January 2023];

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of power control in the mobile network on the radiation level;Journal of Electrical Engineering;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3