Abstract
Introduction/purpose: Tracked vehicles play a vital role across various domains, from military operations to construction and agriculture. This study focuses on improving the efficiency of tracked vehicles by optimizing both gear ratios and gear-shifting strategies while preserving other performance aspects. Methods: The optimization process involves a genetic algorithm for determining optimal gear ratios, considering performance constraints. Furthermore, the paper introduces a gear-shifting optimization algorithm aimed at enhancing fuel economy to the maximum, while allowing for a valid comparison between two sets of gear ratios. Results: Optimizing gear ratios leads to substantial reductions in fuel consumption, as the engine operates within more efficient regions. Additionally, the optimized gear-shifting strategy further enhances efficiency, resulting in a fuel consumption reduction exceeding 12%, when combined with the optimized gear ratios. Conclusions: This paper offers a direct and robust approach for optimizing powertrain gear ratios and gear-shifting strategies in tracked vehicles. The results demonstrate significant improvements in fuel efficiency without compromising other critical vehicle performance parameters.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献