Abstract
Introduction/purpose: The aim of this paper is to present the concept of the generalized ∅-weak contractive condition involving various combinations of d(x,y) in modular metric spaces. Methods: Conventional theoretical methods of functional analysis. Results: This study presents the result of (Murthy & Vara Prasad, 2013) for a single-valued mapping satisfying a generalized ∅ -weak contractive condition involving various combinations of d(x,y). It is generalized in the setting of modular metric spaces, and then it is proved that this single-valued map satisfies the property P. In the end, an example is given in support of the result. Conclusion: With proper generalisations, it is possible to formulate well-known results of classical metric spaces to the case of modular metric spaces.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Reference20 articles.
1. Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181;
2. Chistyakov, V.V. 2010a. Modular metric spaces, I: Basic concepts. Nonlinear Analysis: Theory, Methods and pplications, 72(1), pp.1-14. Available at: https://doi.org/10.1016/j.na.2009.04.057;
3. Chistyakov, V.V. 2010b. Modular metric spaces, II: Application to superposition operators. Nonlinear Analysis: Theory, Methods and Applications, 72(1), pp.15-30. Available at: https://doi.org/10.1016/j.na.2009.04.018;
4. Chistyakov, V.V. 2006. Metric modulars and their application. Doklady Mathematics, 73(1), pp.32-35. Available at: https://doi.org/10.1134/S106456240601008X;
5. Chistyakov, V.V. 2008. Modular Metric Spaces Generated by F-Modular. Folia Mathematica, 15(1), pp.3-24 [online]. Available at: http://fm.math.uni.lodz.pl/artykuly/15/01chistyakov.pdf [Accessed: 10 March 2022];