Protocols for symmetric secret key establishment: Modern approach

Author:

Galis MeiranORCID,Unkašević TomislavORCID,Banjac ZoranORCID,Milosavljević MilanORCID

Abstract

Introduction/purpose: The problem of efficient distribution of cryptographic keys in communication systems has existed since its first days and is especially emphasized by the emergence of mass communication systems. Defining and implementing efficient protocols for symmetric cryptographic keys establishment in such circumstances is of great importance in raising information security in cyberspace. Methods: Using the methods of Information Theory and Secure Multiparty Computation, protocols for direct establishment of cryptographic keys between communication parties have been defined. Results: The paper defines two new approaches to the problem of establishing cryptographic keys. The novelty in the protocol defined in the security model based on information theory is based on the source of common randomness, which in this case is the EEG signal of each subject participating in the communication system. Experimental results show that the amount of information leaking to the attacker is close to zero. A novelty in the second case, which provides security with keys at the level of computer security by applying Secure Multiparty Computation, is in the new application field, namely generation and distribution of symmetric cryptographic keys. It is characteristic of both approaches that within the framework of formal theories, it is possible to draw conclusions about their security characteristics in a formal way. Conclusions: The paper describes two new approaches for establishing cryptographic keys in symmetric cryptographic systems with experimental results. The significance of the proposed solutions lies in the fact that they enable the establishment of secure communication between communication parties from end to end, avoiding the influence of a trusted third party. In that way, the achieved communication level security significantly increases in relation to classical cryptographic systems.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3