An approach of probability based multi-objective optimization considering robustness for material engineering

Author:

Zheng MaoshengORCID,Teng HaipengORCID,Wang YiORCID

Abstract

Introduction/purpose: The newly developed probability-based multi - objective optimization (MOO) has introduced a novel concept of preferable probability to represent a preferability degree of a candidate in optimization in order to overcome the inherent shortcomings of subjective and "additive" factors in the previous MOO methods. In this paper, the new method is extended to include robust optimization for material engineering. Furthermore, energy consumption in a melting process with orthogonal array design and the robust optimization of four different process schemes in machining an electric globe valve body are taken as examples. Methods: The arithmetic mean value of each performance utility indicator of the candidate contributes to one part of the partial preferable probability, while the deviation of each performance utility indicator from its arithmetic mean value of the candidate contributes to the other part of the partial preferable probability quantitatively. Furthermore, following the procedures of the newly developed probability-based multi-objective optimization (PMOO), the total preferable probability of a candidate is obtained, which thus transfers a multi-objective optimization problem into a single objective optimization problem. Results: The optimal control factors of lower electric energy consumption with robustness are bundled steel, loose steel, and uncleaned steel of 12.5%, 50% and 37.5% by weight, respectively, in this steel melting process. This case is closely followed by the scenario of 50 wt% bundled steel, 50 wt% loose steel, and 0 wt% uncleaned steel. The robust optimization of four different process schemes for machining an electric globe valve body is scheme No. 1. Conclusion: The extension of probability-based multi-objective optimization while considering robustness is successful, which can be easily used to deal with the optimal problem with dispersion of data to get objectively an optimal result with robustness in material engineering. The extension of probability-based multi-objective optimization while considering robustness will be beneficial to relevant research and process optimization.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Reference11 articles.

1. Box, G. 1988. Signal-to-Noise Ratios, Performance Criteria, and Transformations. Technometrics, 30(1), pp.1-17. Available at: https://doi.org/10.2307/1270311;

2. Box, G.E.P. & Meyer, R.D. 1986. Dispersion Effects from Fractional Designs. Technometrics, 28(1), pp.19-27. Available at: https://doi.org/10.1080/00401706.1986.10488094;

3. Deshmukh, R. & Hiremath, R. 2020. Societal application of Taguchi method for optimization of process parameters in the Melting Process in the Foundry. In: Pawar, P., Ronge, B., Balasubramaniam, R., Vibhute, A. & Apte, S. (Eds.) Techno-Societal 2018, pp.215-221. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-16962-6_22;

4. Han, Z., Shan, W. & He, T. 2020. Multi-objective Robust Decision-Making of Machining Process Scheme Based on Interval Number. Modern Manufacturing Engineering, 5, pp.98-101. Available at: https://doi.org/10.16731/j.cnki.1671-3133.2020.05.015;

5. Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3