Variations of physical and mechanical properties of concrete with the height

Author:

Sadoun MohamedORCID,Zemri CheikhORCID,Benmahdi KhaledORCID,Rahal NacerORCID

Abstract

Introduction/purpose: Concrete, mortar, and cement pastes are materials that have become central in various fields of construction, structures, and civil engineering. About 7 billion cubic meters of concrete are implemented. Concrete is generally considered a homogeneous material, but that is not always the case given its rheological behavior, which can be due to heterogeneous phenomena of segregation and bleeding. Methods: The study tested a concrete column's physical and mechanical characteristics and deformation in elevation. The tests included measuring absolute and apparent density, porosity, capillary absorption, permeability, speed of propagation, compressive strength, and static and dynamic modulus of elasticity. For this purpose, the standards of non-destructive testing (sclerometer, ultrasound, etc.) were used to take the average of a series of points located at different levels of the element to be tested. Results: The results indicate that changes in the column's height affect its physical and mechanical properties, either increasing or decreasing them (such as porosity, absorbency, permeability, compressive strength, and the static and dynamic modulus of elasticity). These changes are influenced by various factors, including the inherent properties of the concrete implementation (such as vibration and curing) and the climate conditions during construction. Conclusion: The findings of this study emphasize the importance of a nuanced approach to testing and evaluating variations in concrete properties by taking into account the multifaceted impact of changes in column height.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Reference24 articles.

1. ASTM. 2010. ASTM C39/C39M-09: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM, 04.02, December 31. Available at: https://doi.org/10.1520/C0039_C0039M-09;

2. ASTM. 2016. ASTM C597-09: Standard Test Method for Pulse Velocity Through Concrete. ASTM, 04.02, May 27. Available at: https://doi.org/10.1520/C0597-09;

3. ASTM. 2020. ASTM C1585-13: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM, 04.02, September 22. Available at: https://doi.org/10.1520/C1585-13;

4. Attolou, A., Belloc, A. & Torrenti, J.M. 1989. Méthodologie pour une nouvelle protection du béton vis-à-vis de la dessiccation. Bulletin des liaisons Ponts et Chaussées, 164, pp.85-86;

5. Balayssac, J.P., Detriche, C.H. & Grandet, J. 1993. Intérêt de l'essai d'absorption d'eau pour la caractérisation du béton d'enrobage. Materials and Structures, 26, pp.226-230. Available at: https://doi.org/10.1007/BF02472615;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3