Abstract
Introduction/purpose: Pata-type and Zamfirescu mappings are extended beyond metric spaces. Methods: The concept of Pata-type Zamfirescu mapping within the framework of S-metric spaces is employed. Results: A series of corresponding outcomes has been established. Furthermore, the obtained results are employed to solve an integral equation. Conclusions: S-Pata type and Zamfirescu mappings have unique fixed points.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Reference20 articles.
1. Aktay, M. & Özdemir, M. 2022. On (a, ph)-weak Pata contractions. MANAS Journal of Engineering, 10(2), pp. 228-240. Available at: https://doi.org/10.51354/mjen.1085695;
2. Alghamdi, M.A., Gulyaz-Ozyurt, S. & Fulga, A. 2021. Fixed points of Proinov E-contractions. Symmetry, 13(6), art.number:962. Available at: https://doi.org/10.3390/sym13060962;
3. Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta mathematicae, 3, pp. 133-181. Available at: https://doi.org/10.4064/fm-3-1-133-181;
4. Chand, D. & Rohen, Y. 2023. Fixed Points of (a s -b s -ps)-Contractive Mappings in S-Metric Spaces. Nonlinear Functional Analysis and Applications, 28(2), pp. 571-587. Available at: https://doi.org/10.22771/nfaa.2023.28.02.15;
5. Chatterjea, S. 1972. Fixed-point theorems. Dokladi na Bolgarskata Akademiya na Naukite, 25(6), p. 727;