Diagnosis of athlete's preparedness by analysis of electromuscular response of respiratory muscles

Author:

Ostojić MirkoORCID,Cvetković SašaORCID,Stefanović Đorđe

Abstract

Modern diagnostics of athlete preparation involves the acquisition of a large number of data, which requires superior knowledge, serious logistics, protocols, staff, time, etc. Technological breakthroughs in surface electromyography (sEMG) in measuring the activities of respiratory muscles in vivo opened new possibilities in this direction. The correlation between physical preparedness and the ability to maintain breath has been a theoretical phenomenon for over a century. The result at the duration of the breath holding time (BHT) is generally considered a positive indicator of the volume of respiratory capacity during physical activity. Experimental research determined involuntary activities of auxiliary respiratory musculature at the end of the quiet retention of breath and are determined as a physiological break point of breath holding. The time from the start of the breath holding to the first involuntary breathing movement (IBM) is called the control pause (CP). Since this time is not the physiological maximum of breath holding, it is very important to determine the exact moment of reaching the first IBM and the time-frequency characteristics of sEMG signals during the IBM phase (work problem). Using Wavelet methodology, the analysis of sEMG signals is performed on three skeletal muscles, two inhaling (M. Scalenus-Anterior et Medium-SC, and M. Parasternal Intercostales-IC) and one exhalatory (M. Rectus abdominis-Ra), that in addition to others, have auxiliary role and function in the respiratory cycle, and that are sensitive to physiological changes due to apnea, so in their neuromotor response are a possible indicator of metabolic processes that are detected as involuntary breathing movements. Multiple growths in the electrical activity of these muscles during IBM in certain frequency ranges have enabled precise IBM measurement, thus determining the physiologically acceptable duration of the CP. Observation and analysis of the specific respiratory and muscular response indicate dominations of hypoxic or hypercapnic metabolic condition (subject of research). Based on monitoring these changes in 12 subjects classified in the group categorized amateur athletes, it was determined that better-trained subjects have longer CP and react hypercapnically. The conclusions of this non-experimental case study correspond to the practice of training preparation but open the space for new research, primarily those who should develop an affordable method for non-invasive real-time physical preparation.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3