In vitro and in silico lipoxygenase inhibition studies and antimicrobial activity of pyrazolyl-phthalazine-diones

Author:

Milovanović Vesna,Petrović Zorica,Petrović Vladimir,Simijonović Dušica,Mladenović Milan,Tomašević Nevena,Čomić LjiljanaORCID,Radojević IvanaORCID

Abstract

The series of pyrazolyl-phthalazine-dione derivatives (PPDs) was subjected to evaluation of their in vitro lipoxygenase (LOX) inhibition and antimicrobial activities. Results obtained for LOX inhibition activities of PPDs showed that all compounds exhibit good to excellent activity, whereby compounds with eudesmic, syringic, vanillic or toluic moiety are the most active. Molecular modelling study was performed to investigate the possible mechanism of action and binding mode of compounds within the LOX active site. Docking results revealed that activity of the examined compounds depends on the functional group ability to create hydrogen bond accepting (HBA) and hydrophobic features (Hy) in the LOX-Ib active site. In addition, all substances were tested for their antibacterial and antifungal activities. The investigated compounds showed better antifungal than antibacterial activity. The highest antifungal activity was on Aspergillus fumigatus ATTC 204305 and Trichoderma viridae ATCC 13233.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3