Author:
Widjonarko W,Avian Cries,Widyawan Prakosa,Rudiyanto Bayu
Abstract
BLDC motor is the most widely used in the industrial world, especially in electric vehicles. With this increasing demand, a variety of research topics emerged in BLDC motors. One popular research is on BLDC motor speed control topics to maintain speed for its application, such as intelligent cruise technology in electric cars and conveyors for line assembly. However, from several existing studies, the BLDC Motor controller still uses a single controller model. The controller's output is purely from the controller without any improvement in characteristics and has a problem with the oscillating speed setpoint (error problem). In this study, the researcher proposed a combining control with the concept of summation output to handle this problem. With this concept, the control techniques used can improve each other so that better control can be produced following the control system assessment parameters. The authors used a Fuzzy Logic Controller, Artificial Neural Network (ANN), and PID, which were combined and obtained seven control systems. The results show that the control system can improve several parameters using the summation concept from the seven controllers model. It has a positive overall correlation when viewed in terms of the difference between the Error and the setpoint or MAE (Mean Absolute Error) as parameter assessment.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Subject
Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Reference26 articles.
1. Joseph Godfrey, A., & Sankaranarayanan, V. (2018). A new electric braking system with energy regeneration for a BLDC motor driven electric vehicle. Engineering Science and Technology, an International Journal, 21(4), 704-713. https://doi.org/10.1016/j.jestch.2018.05.003;
2. Anshory, I., Robandi, I., & Ohki, M. (2019). System Indentification of BLDC Motor and Optimization Speed Control Using Artificial Intelligent. International Journal of Civil Engineering and Technology (IJCI-ET), 10(07), 1-13;
3. Akhtar, M. A., & Saha, S. (2018). dSPACE Based Motor Testing Platform for Characterization of BLDC Motor Performance Under Different Loading Conditions. 2018 8th IEEE India International Conference on Power Electronics (IICPE), 1-6. https://doi.org/10.1109/IICPE.2018.8709566;
4. Apatya, Y. B. A., Subiantoro, A., & Yusivar, F. (2017). Design and Prototyping of 3-Phase BLDC Motor. 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering, 209-214. https://doi.org/10.1109/QIR.2017.8168483;
5. Tutaj, A., Drabek, T., Dziwinski, T., Baranowski, J., & Piatek, P. (2018). Unintended synchronisation between rotational speed and PWM frequency in a PM BLDC drive unit. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 959-964;