Vehicle routing in the case of uncertain customer demands and soft time windows: A neuro-fuzzy logic approach

Author:

Radovanović Dragan

Abstract

Vehicle routing, with its many variants, is one of the most important and frequently solved problems in transportation engineering. The aim of this paper is to develop a decision-making support tool for addressing the issue of dispatching vehicles in scenarios characterized by uncertain demands within soft time windows. In real-world scenarios, it is not uncommon for customer demands to exhibit flexibility, where certain early arrivals or delays may be deemed acceptable. Therefore, this paper introduces vehicle routing in more realistic contexts, offering potential practical implementations. The methodology for solving the problem is based on a fuzzy logic system whose membership functions are additionally adjusted using a neural network. Such a tool, neuro-fuzzy logic, is suitable for solving a defined routing problem since it can consider all the mentioned uncertainties in the distribution systems. Each user is assigned a performance index that considers travel time, demand, and delivery time windows. Then, the performance index is used as input data in the proposed vehicle routing tool based on the Clarke-Wright algorithm. The described approach has been tested on a concrete example, mimicking a distribution network resembling real world conditions, incorporating estimated travel times between customers. The results demonstrate that the proposed approach can effectively handle customer demands, with an average delay of 5.05 minutes during the 80-minute distribution. In future research, some environmental factors could be included in the proposed model. In addition, one of the directions of future research could be vehicle re-routing using the ideas from this paper.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3