Bitcoin monthly return forecast: A comparison of ARIMA and multi layer Perceptron Artificial Neural Network

Author:

Lazović Ivan,Đorđević Bojan,Lukić Marija

Abstract

In this paper, we compare the predictive power of Auto Regressive Integrated Moving Averages (ARIMA) and Multi-Layer Perceptron Artificial Neural Networks (MLP ANN) model to short-term forecast the monthly returns of Bitcoin cryptocurrency. We evaluate the performance of two models using time series with monthly data from January 2018 to December 2021. The key parameters for the final assessment of prognostic models are the values of Root Mean Square Error-RMSE and Forecast Error-FE. The results of the short-term BTC return forecast showed better properties of composite compared to univariate time series forecasting models, i.e., higher prognostic power of the MLP ANN model compared to the selected ARIMA (1,1,3) model (lower RMSE and FE). The results point to further comparative research of prognostic models and the possibility of forming more complex and hybrid structures of neural network models in order to predict economic phenomena as accurately as possible.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference51 articles.

1. Miers, I., Garman, C., Green, M. and Rubin, A.D. (2013). Zerocoin: Anonymous distributed ecash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium, pp. 397-411. https://DOI.org/10.1109/SP.2013.34;

2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T. and Capkun, S. (2013). Evaluating User Privacy in Bitcoin. In: Sadeghi, AR. (eds) Financial Cryptography and Data Security. FC 2013. Lecture Notes in Computer Science, vol 7859, pp. 34-51. https://DOI.org/10.1007/978-3-642-39884-1_4;

3. Buterin, D., Ribarić, E., Savić, S. (2015). Bitcoin -Nova globalna valuta, investicijska prilika ili nešto treće? Zbornik Veleučilišta u Rijeci, 3(1), str. 145-158. https://DOI.org/10.31784/zvr.3.1.11;

4. Nakamoto, S. (2008). Bitcoin: a peer-to-peer electronic cash system. Available at: https://bitcoin.org/en/bitcoin-paper;

5. Đorđević, B. (2018). Razvoj i struktura globalnog tržišta kriptovaluta. Megabiznis, 2(2), str. 37-50. UDK 336.744 004.738.5:339.13;

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3