Synthesis and characterization of pH-sensitive saccharide modified Polyurethane hydrogels: Effect of polyol, crosslinker and acid chain extender

Author:

Kostić Marija,Cakić Suzana,Ristić IvanORCID,Marinović-Cincović MilenaORCID,Nikolić Ljubiša,Samaržija-Jovanović SuzanaORCID

Abstract

Biodegradable polyurethanes can be the basis for drug delivery systems that are sensitive to external changes. pH-sensitive polyurethanes (PUs) have been used successfully as intravaginal rings and specific drug delivery systems for the colon. In this study, a series of pH-sensitive polyurethane hydrogels with a change of the polyol component (poly(ethylene glycol) 400/poly(propylene glycol) 2000/poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) 1100), saccharides as crosslinkers (melibiose/raffinose/starch) and a-hydroxy carboxylic acids as chain extenders (dimethylol propionic acid/lactic acid) were synthesized. Structural characterization of the synthesized polyurethane hydrogels was performed using Fourier transform infrared spectroscopy (FTIR), which showed that the polyurethane synthesis reaction was achieved with successful crosslinking with saccharides and, despite the change of starting components, FTIR spectra for all investigated samples are almost identical. The degree of swelling of the hydrogels was monitored at 25 °C in solutions of pH values 4.5 and 7.4. In samples with the polyol component block1100, the degree of swelling at pH 7.4 (16.09%) was up to 9 times higher than at pH 4.5 (1.82%). The effects of variable parameters on the thermal properties and phase transitions of PUs hydrogels were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that by varying the saccharide as a crosslinker, the acid chain extender and the chain length of the polyols, the stated properties of polyurethane hydrogels as potential drug delivery carriers can be influenced.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3