Big data analytics and anomaly prediction in the cold chain to supply chain resilience

Author:

Lorenc Augustyn,Czuba Michał,Szarata Jakub

Abstract

The purpose of the research was to develop a prediction method to prevent disruption related to temperature anomaly in the cold chain supply. The analysed data covers the period of the entire working cycle of the thermal container. In the research, automatic Big Data analysis and mathematical modelling were used to identify the disruption. Artificial Neural Network (ANN) was used to predict possible temperature-related disruption in transport. The provided research proves that it is possible to prevent over 82% of disruptions in the cold chain. The ANN enables analyses of the temperature curve and prediction of the disruption before it occurs. The research is limited to coolbox transportation of food under -20o C, but the method could also be used for Full Transport Load (FTL) in refrigerated transport. The research is based on real data, and the developed method helps to reduce the waste in the cold chain, improve transport quality and supply chain resilience. The presented method enables not only to avoid cold chain breaks but also to reduce product damage as well as improve the transport process. It could be used by cargo forwarders, Third-Party Logistics (3PL) companies to reduce costs and waste. The literature review confirms that there is no similar method to prevent disruption in the transport chain. The use of the Internet of Things (IoT) sensors for collecting data connected with Big Data analysis and ANN enables chain resilience provision.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3