Optimal control of propellant consumption during insertion of rocket into a circle orbit of the Earth

Author:

Vikulov Aleksey

Abstract

The problem of launching a rocket into the Earth's orbit has already been solved using the regularization method in previous studies. But the regularization method remains relevant for application to solving integral equations of the first kind, which determine the components of speed and acceleration. The problem of optimal control of propellant consumption during the insertion of a rocket into a circle orbit of the Earth is solved using regularized solutions of integral equations of the first kind which are solutions of corresponding Euler equations on discrete-time net. The influence of the regularization parameter and some additional parameters on precision of discredited problem is investigated. Calculations are carried out for existing chemical rocket engine and promising plasmic one. Considered algorithm is summed up easily to problem of suborbital flights by setting desired coordinate system and modifying motion equations. Conclusions were drawn about the required speed for the lowest fuel consumption, as well as about the problem for a single-stage rocket. Thus, the development of a plasma rocket engine with an exhaust velocity is more than ten times higher than that of a chemical one.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference31 articles.

1. Alekseyev, V.M., Tikhomirov, V.M., Fomin, S.V. (2018). Optimal management. Fizmatlit, Moscow;

2. Azhmyakov, V. (2018). A relaxation-based approach to optimal control of hybrid and switched systems. Print Book and E-Book, Moscow;

3. Denysiuk, R., Rodrigues, H.S., Monteiro, M.T.T., Costa, L., Santo, I.E., Torres, D.F.M. (2015). Multiobjective approach to optimal control for a dengue transmission model. Statistics, Optimization and Information Computing, vol. 3, no. 3, 206-220, https://doi.org/10.19139/soic.v3i3.144;

4. Kahina, L., Spiteri, P., Demim, F., Mohamed, A., Nemra, A., Messine, F. (2018). Application optimal control for a problem aircraft flight. Journal of Engineering Science and Technology Review, vol. 11, no. 1, 156-164, https://doi.org/10.25103/jestr.111.19;

5. Konstantinov, M.S., Petukhov, V.G., Thein, M. (2019). Optimization of trajectories of heliocentric flights. MAI Publishing, Moscow;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3