Mathematical modelling of the effect of heat fluxes from external sources on the surface of spacecraft
-
Published:2020
Issue:4
Volume:18
Page:732-736
-
ISSN:1451-4117
-
Container-title:Journal of Applied Engineering Science
-
language:en
-
Short-container-title:J Appl Eng Science
Author:
Ye Ko,Pronina Polina,Polyakov Pavel
Abstract
Modelling the extraneous heat exchange of spacecraft using solar radiation simulation facility and simulators of the planetary radiation field in several cases is an intractable problem not only in technical but also in methodological terms. For some technical reasons, solar radiation simulator is stationary. Consequently, to reproduce a possible change in the orientation of the test object relative to the solar radiation flux, it is necessary to equip the thermal vacuum unit with devices that allow the test object to be rotated at least about two axes. In this paper, a mathematical model and a method for solving the problem of heat transfer in a multilayer structure of screen-vacuum thermal insulation under the influence of solar radiation is proposed. A method is proposed for the numerical solution of a normal system of nonlinear differential equations using the linearisation of nonlinear terms. Various results of numerical modelling were obtained, which indicate the adequacy of the proposed mathematical model. It has been revealed that high-inertia thermal insulation of sufficient thickness is required to stabilise the thermal state inside the spacecraft.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Subject
Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Reference34 articles.
1. Kartashov, E.M. (1985). Analytical methods in the theory of thermal conductivity of solids. Vysshaya Shkola, Moscow; 2. Attetkov, A.V., Volkov, I.K. (2015). Temperature field of an anisotropic half-space, the movable boundary of which contains a film coating. Izvestiya RAN. Energy, vol. 3, 39-49; 3. Formalev, V.F., Kolesnik, S.A., Selin, I.A., Kuznetsova, E.L. (2017). Optimal way for choosing parameters of spacecraft's screen-vacuum heat insulation. High Temperature, vol. 55, no. 1, 101-106; 4. Formalev, V.F., Kolesnik, S.A. (2019). On thermal solitons during wave heat transfer in restricted areas. High Temperature, vol. 57, no. 4, 498-502; 5. Zvorykin, A., Aleshko, S., Fialko, N., Maison, N., Meranova, N., Voitenko, A., Pioro, I. (2016). Computer simulation of flow and heat transfer in bare tubes at supercritical parameters. International Conference on Nuclear Engineering, Proceedings, ICONE, vol. 5, no. V005T15A023;
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|