Experimental studies and modelling of fracture toughness of the epoxy samples with eccentric cracks
-
Published:2020
Issue:4
Volume:18
Page:719-723
-
ISSN:1451-4117
-
Container-title:Journal of Applied Engineering Science
-
language:en
-
Short-container-title:J Appl Eng Science
Author:
Korolenko Vladimir,Li Yulong,Dobryanskiy Vasiliy,Solyaev Yury
Abstract
The relevance of the work is due to the need for experimental studies to determine the mechanical characteristics of epoxy resin samples, which can be used to check the correctness of the choice of parameters and criteria for the onset of crack growth within the framework of elastic fracture mechanics, cohesive models, models such as virtual crack closure technique, extended finite element method, etc. Thus, the article is aimed at determining the parameters of fracture toughness of samples of brittle epoxy resin with applied eccentric cracks. The leading method for the study of this problem is the experimental method, which makes it possible to determine the critical stress intensity factor for three-point bending of samples with an edge crack, as well as to study samples with an eccentric (relative to the center of the sample) location of cracks. The paper presents the results of experimental studies to determine the critical stress intensity factors for samples of brittle epoxy resin L285 with hardener H 285 (Hexion), obtained without the addition of a plasticizer. The results of testing samples with asymmetric cracks are compared with the results of numerical modeling within the framework of elastic fracture mechanics with the energy fracture criterion. The materials of the article are of practical value, first of all, for the calibration of fracture mechanics models.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Subject
Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Reference23 articles.
1. Allen, R.J., Booth, G.S., Jutla, T. (1988). A review of fatigue crack growth characterisation by linear elastic fracture mechanics (LEFM). Part I -principles and methods of data generation. Fatigue & Fracture of Engineering Materials & Structures, vol. 11, no. 1, 45-69; 2. Rege, K., Lemu, H.G. (2017). A review of fatigue crack propagation modelling techniques using FEM and XFEM. Proceedings of the IOP Conference Series: Materials Science and Engineering, vol. 276, no. 1, 012027; 3. Heidari-Rarani, M., Sayedain, M. (2019). Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theoretical and Applied Fracture Mechanics, vol. 103, no. 102246; 4. Godwin, A.D. (2017). Plasticizers. William Andrew Publishing, Norwich; 5. Nemati Giv, A., Ayatollahi, M.R., Ghaffari, S.H., da Silva, L.F.M. (2018). Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints. The Journal of Adhesion, vol. 94, no. 13, 1082-1121;
|
|