Energy metabolism in the pancreas of ground squirrels (Spermophilus citellus) during prolonged cold exposure and in hibernation

Author:

Janković Aleksandra,Kalezić Anđelika,Đurić Strahinja,Korać Aleksandra,Buzadžić Biljana,Korać Bato

Abstract

Mammalian hibernators undergo a host of biochemical adaptations that allow them to survive the harsh cold environment and food restriction. Since the energy metabolism of the pancreas during hibernation remains unknown, we investigated the molecular basis of mitochondrial energy-producing pathways in line with their regulating mechanisms, as well as the (re)organization of antioxidative defence in the pancreas during the prehibernation period and in the hibernating state. To this end, male ground squirrels (Spermophilus citellus) were divided into two groups, the control group kept at room temperature (22±1 °C) and the group exposed to low temperature (4±1 °C). Active animals from the cold exposed group were sacrificed after 1, 3, 7, 12, and 21 days; animals that entered hibernation were sacrificed after 2-5 days of torpor. Our results showed that the protein levels of respiratory complexes I, II, IV and cytochrome c were increased in response to prolonged cold exposure (from day 12) and that such expression profiles were maintained during hibernation. In parallel, AMP-activated protein kinase a (AMPKa) and nuclear respiratory factor 1 (NRF-1) were shown to be upregulated. Moreover, prolonged cold exposure and hibernation induced an increase in the protein expression of antioxidative defence enzymes copper-zinc superoxide dismutase (CuZnSOD) and glutathione peroxidase (GSH-Px). In conclusion, these results point to a controlled metabolic remodeling in the pancreas of ground squirrels during prolonged cold exposure and in hibernation, which includes an improvement of mitochondrial oxidative capacity along with a proportional upregulation of antioxidative defence.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3