1. Kochura, A., Podkolzina, L., Ivakin, Ya., Nidziev, I. (2013). Singular matrix beams in the generalized symmetric eigenvalue problem. SPIIRAS Proceedings, vol. 26, no. 3, 253-276, DOI: http://dx.doi. org/10.15622/sp.26.18, from http://proceedings. spiiras.nw.ru/ojs/index.php/sp/article/view/1705, accessed on 2017-09-21.;
2. Parlett, B. (1998). Symmetric eigenvalue problem. Society for Industrial and Applied Mathematics, Philadelphia, DOI: 10.1137/1.9781611971163;
3. Yousef, S. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematic, Philadelphia, DOI: 10.1137/1.9780898718003. ch4, from http://inis.jinr.ru/sl/M_Mathematics/MN_ Numerical%20methods/MNl_Numerical%20linear% 20algebra/Saad%20Iterative.pdf, accessed on 2017-09-20.;
4. Kochura, A., Podkolzina, L., Ivakin, Ya., Nidziev, I. (2014). Development of algorithm of the decision of systems linear equations with the varied parameters, using the matrix sparseness. SPIIRAS Proceedings, no. 2(33), 79-98, DOI: 10.15622/ sp.33.5, from https://readera.ru/razrabotka-algoritma- reshenija-sistem-linejnyh-uravnenij-s-variruemymi-142176937-en, accessed on 2017-08-09.;
5. Alaghband, G. (1999). Parallel sparse matrix solution and performance. Parallel Computing, vol. 21, no. 9, 1407-1430, DOI: 10.1016/0167-8191(95)00029-N;