Fabrication and investigation of a millimeter-scale electromagnetic generator for large-amplitude impact motions

Author:

Moradian Khadijeh,Raghebi Mahdi,Sheikholeslami Tahereh

Abstract

Environment vibrations are an important source of energy, often occurring at very low frequencies, but with large amplitude. The possibility to use the large amplitude of the motions is important to enhance the energy harvester's output power. In this paper, an electromagnetic energy harvester is designed and fabricated to produce electricity from low- frequency high amplitude impact motions using an elastic polyurethane cylinder. This millimeter-scale electromagnetic generator (MS-EMG) includes a movable magnet attached to a free sliding mass, a fixed coil, and a polyurethane holding chamber. Polyurethane is a very stable elastic polymer that provides continuous large-amplitude movement for the magnet and plays an effective role in impact capability. Therefore, the effect of impact excitation and the polyurethane foam was investigated simultaneously. The performance of the device was studied, experimentally, for the environment vibrations in the range of 1 to 10 Hz. The impact motions were applied using a simulator that was fabricated for this work. The fabricated MS-EMG with a volume of 1.07 cm3 and a mass of 8.74 g show the capability of producing a voltage of 44.41 mV and power of 10.48 µW over a 100 Oresistive load, using a 6 Hz frequency impact motion. Finally, an analytical model is used to simulate the device performance which showed a good agreement with the experimental results.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3