Enhancing the performance of Savonius rotor using tiered-height zigzag patterns in concave surface

Author:

Sumiati Ruzita,Dinata Uyung,Saputra Dendi

Abstract

A technique to reduce CO2 emissions from the use of fossil fuels is to use clean energy. One of them is wind energy, which is generated by a wind turbine. Savonius, a type of vertical axis wind turbine, is a small-scale energy conversion device suitable for low wind speeds, such as those characteristic of Indonesian wind speed. The objective of the current study was to analyze the impact of implementing a tiered-height zigzag pattern on the concave surface of the Savonius blade. The zigzag angle operates to direct the wind toward the reverse blade, consequently augmenting the pressure on the reverse blade. In addition, the tiered-height zigzag pattern in the concave surface increases the area of the turbine that is in contact with the wind, which in turn generates more energy. This study used an open-type wind tunnel to conduct experiments as the primary technique of investigation. Its performance was assessed in terms of power and torque coefficients. Additionally, experiments were conducted with other standard semi-circular blades to get a direct comparison. According to the findings of the experiments, incorporating a tiered-height zigzag pattern into a concave surface may produce a power coefficient (Cp) that is 16 % higher than that of a semi-circular. The highest Cp was 0.286 at a TSR of 0.55 and U = 6 m/s. In this case, the Savonius wind turbine's ability may be elevated by including a tiered-height zigzag pattern in the Savonius concave surface.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3