Design and development of robot arm system for classification and sorting using machine vision

Author:

Cong Vo,Hanh Le,Phuong Le,Duy Dang

Abstract

The main focus of this paper is to design and develop a system of two robot arms for classifying and sorting objects based on shape and size using machine vision. The system uses a low-cost and high-performance hierarchical control system including one master and two slaves. Each slave is a robot controller based on a microcontroller that receives commands from the master to control the robot arm independently. The master is an embedded computer used for image processing, kinematic calculations, and communication. A simple and efficient image processing algorithm is proposed that can be implemented in real-time, helping to shorten the time of the sorting process. The proposed method uses a series of algorithms including contour finding, border extraction, centroid algorithm, and shape threshold to recognize objects and eliminate noise. The 3D coordinates of objects are estimated just by solving a linear equation system. Movements of the robot's joints are planned to follow a trapezoidal profile with the acceleration/deceleration phase, thus helping the robots move smoothly and reduce vibration. Experimental evaluation reveals the effectiveness and accuracy of the robotic vision system in the sorting process. The system can be used in the industrial process to reduce the required time to achieve the task of the production line, leading to improve the performance of the production line.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of gamification based virtual robots in urban landscape Design: Interaction and entertainment experience in the design process;Entertainment Computing;2025-01

2. Grasping moving objects with incomplete information in a low-cost robot production line using contour matching based on the Hu moments;Results in Engineering;2024-09

3. YOLO-Driven Robotic System for Automated Object Singulation;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

4. A Robotic Manipulator with Conveyor System for Visual Sorting of Work Pieces;2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS);2024-04-18

5. Revolutionizing Waste Management: A Smart Materials Recovery Facilility With Robotic and AI Integration;2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3