Forecasting The Consumptions of Coagulation Tests Using A Deep Learning Model

Author:

Isbilen Basok Banu,Kocakoc Ipek Deveci,Iyilikci Veli,Kantarmaci Selena,Fidan Mesut

Abstract

Background: Laboratory professionals aim to provide a reliable laboratory service using public resources efficiently while planning a test’s procurement. This intuitive approach is ineffective, as seen in the COVID-19 pandemic, where the dramatic changes in admissions (e.g. decreased patient admissions) and the purpose of testing (e.g. D-dimer) were experienced. A model based on objective data was developed that predicts the future test consumption of coagulation tests whose consumptions were highly variable during the pandemic. Methods: Between December 2018 and July 2021, monthly consumptions of coagulation tests (PTT, aPTT, D-dimer, fibrinogen), total-, inpatient-, outpatient-, emergency-, non-emergency -admission numbers were collected. The relationship between inputs and outputs was modeled with the external input nonlinear autoregressive artificial neural network (ANN) (NARX) using MATLAB. Monthly test consumptions between January-July 2021 were used to test the models’ prediction power. Results: According to the cointegration analysis, total-, emergency-, and non-emergency admission numbers plus the number of working days per month were included in the model. When aPTT and fibrinogen consumptions were estimated, it was possible to predict the other tests. Fifty months of data were used to predict the next six months, and the NARX prediction was the more robust approach for both tests.   Conclusions: The deep learning model gives better results than the intuitive approach in forecasting, even in the pandemic era, and it shows that more effective and efficient planning will be possible if ANN-supported decision mechanisms are used in forecasting tests’ consumptions in the procurement process.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3