On r-dynamic coloring of some graph operations

Author:

Agustin Ika Hesti,Dafik D.,Harsya A. Y.

Abstract

Let $G$ be a simple, connected and undirected graph. Let $r,k$ be natural number. By a proper $k$-coloring  of a graph $G$, we mean a map $ c : V (G) \rightarrow S$, where $|S| = k$, such that any two adjacent vertices receive different colors. An $r$-dynamic $k$-coloring is a proper $k$-coloring $c$ of $G$ such that $|c(N (v))| \geq min\{r, d(v)\}$ for each vertex $v$ in $V(G)$, where $N (v)$ is the neighborhood of $v$ and $c(S) = \{c(v) : v \in S\}$ for a vertex subset $S$ . The $r$-dynamic chromatic number, written as $\chi_r(G)$, is the minimum $k$ such that $G$ has an $r$-dynamic $k$-coloring. Note that the $1$-dynamic chromatic number of graph is equal to its chromatic number, denoted by $\chi(G)$, and the $2$-dynamic chromatic number of graph has been studied under the name a dynamic chromatic number, denoted by $\chi_d(G)$. By simple observation it is easy to see that $\chi_r(G)\le \chi_{r+1}(G)$, however $\chi_{r+1}(G)-\chi_r(G)$ can be arbitrarily large, for example $\chi(Petersen)=2, \chi_d(Petersen)=3$, but $\chi_3(Petersen)=10$. Thus, finding an exact values of $\chi_r(G)$ is significantly useful. In this paper, we will show some exact values of $\chi_r(G)$ when $G$ is an operation of special graphs.

Publisher

UPT Penerbitan Universitas Jember

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological indices based on degrees in Circumcoronenes of Dominatig David Derived Network;2024

2. On r-dynamic vertex coloring of some semi-strong product of graphs;5th INTERNATIONAL CONFERENCE ON CURRENT SCENARIO IN PURE AND APPLIED MATHEMATICS (ICCSPAM-2022);2023

3. Graph r-hued colorings—A survey;Discrete Applied Mathematics;2022-11

4. On the r-dynamic chromatic number of subdivision of wheel graph;Journal of Physics: Conference Series;2022-01-01

5. Design Thinking on δ-Dynamic Coloring of Central Vertex Join of Graphs;Journal of Physics: Conference Series;2021-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3