Pencarian Pola Asosiasi Keluhan Pasien Menggunakan Teknik Association Rule Mining

Author:

Rosyidah Ulya Anisatur,Oktavianto Hardian

Abstract

Perkembangan dan pertumbuhan data di bidang kesehatan semakin meningkat dan bertambah, baik dari kualitas maupun kuantitas, dilihat dari sisi kualitas, perkembangan data ini mengalami perubahan dari bentuk dokumen tulis menjadi dokumen digital atau yang biasanya kita sebut dengan file. Isu yang muncul adalah apakah informasi yang bisa diambil atau didapatkan dari sekian banyak data medis yang tersedia hanya berupa informasi – informasi pada umumnya, sedangkan dari suatu basis data yang tersedia seringkali memuat beberapa variabel sekaligus, bahkan apabila diteliti lebih jauh lagi, basis data yang berbeda bisa jadi memuat beberapa variabel yang sama, dari isu tersebut maka diperlukan suatu metode untuk bisa menggali lebih dalam informasi – informasi yang belum diketahui. Berkaitan dengan data medis serta data mining, maka penelitian kali ini akan membahas tentang implementasi atau kegunaan dari data mining pada data kunjungan pasien dengan cara menerapkan association rule mining untuk mendapatkan pola – pola asosiasi dari basis data kunjungan pasien yang tersedia menggunakan algoritma apriori dan algoritma FP-Growth. Baik algoritma apriori dan algoritma FP-Growth menghasilkan output yang sama. Perbedaan hasil uji coba terletak pada jumlah rule asosiasi yang ditemukan, dengan menggunakan algoritma apriori ditemukan 3 buah rule asosiasi, sedangkan ketika digunakan algoritma FP-Growth ditemukan 2 buah rule asosiasi, hal ini terjadi pada saat  uji coba yang dilakukan menggunakan confidence sebesar 80%.   

Publisher

UPT Penerbitan Universitas Jember

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Modeling for Restaurant Menu Customization: An FP-Growth Algorithm-Based Solution;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3