Optimization of the Main Landing Gear Structure of LSU-02NGLD

Author:

Wandono Fajar Ari

Abstract

The mass of the landing gear structure becomes an important aspect of the total mass of the UAV (unmanned aerial vehicle). Therefore, many efforts have been made to reduce the mass of the landing gear by performing structural optimization. Reducing the mass of the landing gear structure can be used as a substitute to increase the payload on the UAV. The landing gear structure in this paper is the main landing gear of LSU-02NGLD (LAPAN Surveillance UAV series 02 New Generation Low Drag). LSU-02NGLD is a UAV that has 2.9 m of wingspan with a total mass of 21 kg. This paper aims to optimize the main landing gear structure so that optimization can reduce the mass. The optimization was carried out using the finite element software by modeling the main landing gear structure as a 1D beam element. There were 9 beam elements in the main landing gear structure model. The cross-sectional width (w) and the cross-sectional height (h) for each element were used as design variables. The objective of the optimization was to minimize the mass while maintaining maximum bending stress not greater than 20 MPa, displacement in y-direction not greater than 1 mm, and displacement in z-direction not greater than 0.1 mm. The optimization result showed that the mass reduction of the main landing gear structure was 50%, with all constraints fulfilled.

Publisher

UPT Penerbitan Universitas Jember

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation on the main landing gear structure of unmanned aerial vehicle (LSU-05 NG);INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING FOR EMERGING TECHNOLOGIES (ICOMEET 2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3