Assisting Visually Impaired People Using Deep Learning-based Anomaly Detection in Pedestrian Walkways for Intelligent Transportation Systems on Remote Sensing Images

Author:

Alsolai Hadeel,Al-Wesabi Fahd N.ORCID,Motwakel Abdelwahed,Drar Suhanda

Abstract

Anomaly detection in pedestrian walkways of visually impaired people (VIP) is a vital research area that utilizes remote sensing and aids to optimize pedestrian traffic and improve flow. Researchers and engineers can formulate effective tools and methods with the power of machine learning (ML) and computer vision (CV) to identifying anomalies (i.e. vehicles) and mitigate potential safety hazards in pedestrian walkways. With recent advancements in ML and deep learning (DL) areas, authors have found that the image recognition problem ought to be devised as a two-class classification problem. Therefore, this manuscript presents a new sine cosine algorithm with deep learning-based anomaly detection in pedestrian walkways (SCADL-ADPW) algorithm. The proposed SCADL-ADPW technique identifies the presence of anomalies in the pedestrian walkways on remote sensing images. The SCADL-ADPW techniques focus on the identification and classification of anomalies, i.e. vehicles in the pedestrian walkways of VIP. To accomplish this, the SCADL-ADPW technique uses the VGG-16 model for feature vector generation. In addition, the SCA approach is designed for the optimal hyperparameter tuning process. For anomaly detection, the long short-term memory (LSTM) method can be exploited. The experimental results of the SCADL-ADPW technique are studied on the UCSD anomaly detection dataset. The comparative outcomes stated the improved anomaly detection results of the SCADL-ADPW technique.

Publisher

King Salman Center for Disability Research

Subject

General Medicine,Religious studies,Cultural Studies,Materials Chemistry,Economics and Econometrics,Media Technology,Forestry,General Medicine,General Medicine,General Medicine,General Materials Science,Energy Engineering and Power Technology,Fuel Technology,Psychiatry and Mental health,General Earth and Planetary Sciences,General Environmental Science

Reference18 articles.

1. Semantic segmentation based crowd tracking and anomaly detection via neuro-fuzzy classifier in smart surveillance system;F Abdullah;Arab. J. Sci. Eng,2023

2. Taxonomy of anomaly detection techniques in crowd scenes;A Aldayri;Sensors,2022

3. A novel GAN-based anomaly detection and localization method for aerial video surveillance at low altitude;D Avola;Remote Sens,2022

4. Wearable walking aid system to assist visually impaired persons to navigate sidewalks;A Bhattacharya,2021

5. Video anomaly detection with spatio-temporal dissociation;Y Chang;Pattern Recognit,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3