Developing a Pain Identification Model Using a Deep Learning Technique

Author:

Wahab Sait Abdul Rahaman1ORCID,Dutta Ashit Kumar2ORCID

Affiliation:

1. Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, Al-Ahsa, Hofuf 31982, Saudi Arabia

2. Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia

Abstract

In this study, the authors proposed a pain identification model using facial expressions. An image extraction technique was developed using the liquid neural network to extract diverse images from the video files. The authors used the DenseNet 201 and MobileNet V3 models to build a hybrid feature engineering technique. They applied quantization aware training to improve the efficiency of the models. The Prkachin and Solomon Pain Intensity score was used for the image classification. They fine-tuned the LightGBM model using the random search algorithm for identifying pain from the facial images. The authors used the Denver Intensity of Spontaneous Facial Action dataset to generalize the proposed model. The performance evaluation outlined the significant performance of the proposed model in identifying pain using the images. In addition, it demands limited computational resources to identify pain. Healthcare and rehabilitation centers can implement the proposed model to provide adequate services to disabled individuals.

Publisher

King Salman Center for Disability Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3