Hybrid Feature Extraction Technique-based Alzheimer’s Disease Detection Model Using MRI Images

Author:

Al-Rawashdeh Hazim SalehORCID,Usman AminuORCID,Dutta Ashit KumarORCID,Sait Abdul Rahaman WahabORCID

Abstract

Detecting Alzheimer’s disease (AD) using magnetic resonance imaging (MRI) is essential for early diagnosis and management. This study introduces a new method for detecting AD by combining three robust models: DenseNet201, EfficientNet B7, and extremely randomized trees (ERT). We improve the ability to extract features in DenseNet201 by including a self-attention mechanism. Additionally, we use early stopping techniques on EfficientNet B7 to address the issue of overfitting. In addition, Bayesian Optimization and Hyperband optimization techniques are used to adjust the hyperparameters of extra-trees to differentiate normal and abnormal MRI images. In addition, the authors used SHapley Additive exPlanations to understand the model’s decision. With minimal computer resources, the proposed model achieved a remarkable accuracy of 98.9% in detecting AD. The findings highlight the effectiveness of recommended feature extraction and ERT models and optimization methods to accurately identify AD using MRI images.

Publisher

King Salman Center for Disability Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3