Optimal Deep Recurrent Neural Networks for IoT-enabled Human Activity Recognition in Elderly and Disabled Persons

Author:

Alotaibi Faiz,Alnfiai Mrim M.ORCID,Al-Wesabi Fahd N.,Alduhayyem Mesfer,Hilal Anwer Mustafa,Hamza Manar Ahmed

Abstract

Aging is related to a decrease in the ability to execute activities of day-to-day routine and decay in physical exercise, which affect mental and physical health. Elderly patients or people can depend on a human activity recognition (HAR) system, which monitors the activity interventions and patterns if any critical event or behavioral changes occur. A HAR system incorporated with the Internet of Things (IoT) environment might allow these people to live independently. While the number of groups of activities and sensor measurements is enormous, the HAR problem could not be resolved deterministically. Hence, machine learning (ML) algorithm was broadly applied for the advancement of the HAR system to find the patterns of human activity from the sensor data. Therefore, this study presents an Optimal Deep Recurrent Neural Networks for Human Activity Recognition (ODRNN-HAR) on Elderly and Disabled Persons technique in the IoT platform. The intension of the ODRNN-HAR approach lies in the recognition and classification of various kinds of human activities in the IoT environment. Primarily, the ODRNN-HAR technique enables IoT devices to collect human activity data and employs Z-score normalization as a preprocessing step. For effectual recognition of human activities, the ODRNN-HAR technique uses the DRNN model. At the final stage, the optimal hyperparameter adjustment of the DRNN model takes place using the mayfly optimization (MFO) algorithm. The result analysis of the ODRNN-HAR algorithm takes place on benchmark HAR dataset, and the outcomes are examined. The comprehensive simulation outcomes highlighted the improved recognition results of the ODRNN-HAR approach in terms of different measures.

Publisher

King Salman Center for Disability Research

Subject

Pharmacology (medical),Applied Mathematics,General Medicine,Geriatrics and Gerontology,General Medicine,General Earth and Planetary Sciences,General Environmental Science,Industrial and Manufacturing Engineering,Environmental Engineering,Earth-Surface Processes,General Medicine,Religious studies,Cultural Studies

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3