Exploring Orthosis Designs for 3D Printing Applying the Finite Element Approach: Study of Different Materials and Loading Conditions

Author:

Umer UsamaORCID,Mian Syed Hammad,Moiduddin Khaja,Alkhalefah Hisham

Abstract

Three-dimensional (3D) printing, especially using fused deposition modeling, is becoming more and more popular in the medical sector because of its exceptional advantages. While it has been used for prototyping, 3D printing has not yet been completely explored to produce a functional product. The key causes are the abundance of 3D printing materials and the lack of a comprehensive study outlining the design process. Consequently, this paper describes a reverse engineering (RE) design approach based on data acquisition utilizing laser scanning and splint design from the acquired point cloud data. This study also focuses on the evaluation of various wrist orthosis/splint designs and materials using finite element (FE) analysis in order to improve upon the conventional approach. Sixty FE analysis simulations are undertaken in flexion–extension and radial–ulnar wrist movements to investigate the displacements and the stresses. The splint is then fabricated utilizing the material and thickness that have been specified by FE analysis. The major goals of this study are to examine the RE design methodology, explore various materials, and assess the viability of 3D printing. The polylactic acid (PLA) hand splint has proven to be the sturdiest in terms of average displacements when compared to the other materials, followed by polyethylene terephthalate glycol (PETG), acrylonitrile butadiene styrene (ABS), polypropylene, and thermoplastic polyurethanes. According to simulation data, the PLA splint has 38.6%, 38.8%, 38.5%, and 38.7% less displacement in the major loading direction in flexion, extension, radial, and ulnar, respectively, than the ABS splint. Moreover, the PLA-based hand splint has a peak stress value below the yield strength of PLA, rendering it reliable for patients to wear. Also, it turns out that PETG and ABS behave rather similarly. Furthermore, it has been shown that a balanced approach can reduce material use and building time. For instance, employing PLA and a thickness of 2 mm results in reduced material costs without compromising the effectiveness of the splint. As a result, choosing the right material and splint thickness can help the 3D-printed hand splint perform better.

Publisher

King Salman Center for Disability Research

Reference51 articles.

1. An overview on low back pain and functional disability: associated risk factors and management;WK Abdelbasset;J. Disabil. Res,2022

2. Acrylonitrile Butadiene Styrene (ABS Plastic): Uses, Properties & Structure Available online: https://omnexus.specialchem.com/selection-guide/acrylonitrile-butadiene-styrene-abs-plastic accessed on 12 March 2023

3. The role of 3D printing in medical applications: a state of the art;A Aimar;J. Healthc. Eng,2019

4. Incidence of stroke among Saudi population: a systematic review and meta-analysis;BA Alqahtani;Neurol. Sci,2020

5. Long-term use of a static hand-wrist orthosis in chronic stroke patients: a pilot study;A Andringa;Stroke Res. Treat,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3