Abstract
We address the question of whether the Thom-Boardman symbol of a map germ is an invariant with respect to bi-Lipschitz right equivalence. We give a counterexample showing that in general the answer is negative. We prove that the rank of a map germ is a bi-Lipschitz contact invariant. Consequently, the first Thom-Boardman symbol and its length are bi-Lipschitz contact invariants.
Reference10 articles.
1. Birbrair, L., Costa, J. C. F., Fernandes, A., & Ruas, M. A. S. (2007). K-bi-Lipschitz equivalence of real function-germs. Proceedings of the American Mathematical Society, 135(4), 1089-1095. https://doi.org/10.1090/S0002-9939-06-08566-2
2. Birbrair, L., & Mendes, R. (2018). Lipschitz contact equivalence and real analytic functions. arXiv:1801.05842v1.
3. Bivià-Ausina, C., & Fukui, T. (2017). Invariants for bi-Lipschitz equivalence of ideals. The Quarterly Journal of Mathematics, 68(3), 791-815. https://doi.org/10.1093/qmath/hax002
4. Boardman, J. M. (1967). Singularities of differentiable maps. Publications Mathématiques de l'I.H.É.S., 33, 21-57. https://doi.org/10.1007/BF02684585
5. Gibson, C. G. (1979). Singular points of smooth mappings (Research notes in mathematics, Vol. 25). Pitman.