Artificial intelligence methods in cardiovascular surgery and diagnosis of pathology of the aorta and aortic valve (literature review)

Author:

Kim G. I.1ORCID,Blekanov I. S.2ORCID,Ezhov F. V.2ORCID,Kovalenko L. A.2ORCID,Larin E. S.2ORCID,Razumilov E. S.2ORCID,Pugin K. V.2ORCID,Dadashov M. S.2ORCID,Pyagay V. A.1ORCID,Shmatov D. V.1ORCID

Affiliation:

1. St. Petersburg State University; St. Petersburg State University Hospital, St. Petersburg State University

2. St. Petersburg State University

Abstract

The management of patients with aortic and aortic valve pathology is an extremely relevant task. The main problem of this pathology is the absence of obvious symptoms before the onset of a life–threatening condition, dissection or rupture of the aorta. Early timely diagnosis becomes the most relevant in this situation, and imaging research methods play a leading role in this regard. However, the main limiting factor is the speed and quality of image evaluation. Therefore, an actual task is to develop an AI-based physician assistant for image mining (Computer vision, CV). This article provides an overview of modern neural network methods for effective analysis of diagnostic images (MSCT and MRI) relevant for the study of diseases of the cardiovascular system in general and the aorta in particular. One of the main focuses of this analysis is the study of the applicability of modern neural network methods based on the Transformer architecture or the Attention Mechanism, which show high accuracy rates in solving a wide range of tasks in other subject areas, and have a high potential of applicability for qualitative analysis of diagnostic images. An overview of two fundamental problems of image mining is given: classification (ResNet architecture, ViT architect, Swin Transformer architect) and semantic segmentation (2D approaches – U-Net, TransUNet, Swin-Unet, Segmenter and 3D approaches – 3D-Unet, Swin UNETR, VT-UNET). The described methods, with proper fine tuning and the right approach to their training, will effectively automate the process of diagnosing aortic and aortic valve pathology. For the successful implementation of AI development projects, a number of limitations should be taken into account: a high-quality data set, server graphics stations with powerful graphics cards, an interdisciplinary expert group, prepared scenarios for testing in conditions close to real ones.

Publisher

Cardiology Research Institute

Reference48 articles.

1. Yuan Z., Lu Y., Wei J., Wu J., Yang J., Cai Z. Abdominal aortic aneurysm: Roles of inflammatory cells. Front. Immunol. 2021;11:609161. DOI: 10.3389/fimmu.2020.609161.

2. Oladokun D., Patterson B.O., Sobocinski J. Karthikesalingam A., Loftus I., Thompson M.M. et al. Systematic review of the growth rates and influencing factors in thoracic aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2016;51:674–81. DOI: 10.1016/j.ejvs.2016.01.017.

3. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P. et al. Heart disease and stroke statistics – 2019 update: A report from the American Heart Association. Circulation. 2019;139(10):e56–e528. DOI: 10.1161/CIR.0000000000000659.

4. Gouveia E., Melo R., Mourão M., Caldeira D., Alves M., Lopes A. et al. A systematic review and meta-analysis of the incidence of acute aortic dissections in population-based studies. J. Vasc. Surg. 2022;75(2):709– 720. DOI: 10.1016/j.jvs.2021.08.080.

5. Goldstein S.A., Evangelista A., Abbara S., Arai A., Asch F.M., Badano L.P. et al. Multimodality imaging of diseases of the thoracic aorta in adults: From the American Society of Echocardiography and the European Association of Cardiovascular Imaging: Endorsed by the Society Of Ким Г.И., Блеканов И.С., Ежов Ф.В. и др. Методы искусственного интеллекта в сердечно-сосудистой хирургии и диагностика патологии аорты и аортального клапана Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography. 2015;28(2):119–182. DOI: 10.1016/j.echo.2014.11.015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3