Effect of whole body vibration on bone nanocomposites organisation and prevention of loss of bone mineral density under conditions of modeling obesity and sedentary lifestyle: experimental study

Author:

Kostyshyn N.M.ORCID,Gzhegotskyi M.R.ORCID,Yarova O.A.ORCID,Kostyshyn L.P.ORCID,Kulyk Yu.O.ORCID

Abstract

This study aimed to investigate the influence of high-frequency whole body vibration (WBV) on metabolic and structural responses of rats' bone tissue under the sedentary lifestyle and obesity. Obesity combined with a sedentary lifestyle can present the potential negative health effects. However, whole body vibration can be used as a means of non-pharmacological correction of bone mineral density. For characterization of bone nanocomposites organisation and prevention of mineral density loss, X-ray diffraction method was used. Markers of bone remodeling in the rats' blood: leptin, osteocalcin, tartarate resistant acid phosphatase 5b, alkaline phosphatase. Using a high-calorie diet and low-mobility model, we proved that bone mineral mass had been decreasing since 8th week. It should be noted that the decrease in the relative amount of crystalline phase (hydroxyapatite) continued throughout the experiment, up to 24 weeks (p<0.05). These structural changes were accompanied by changes in quantitative indicators of the bone remodeling markers. Rats had lower bone mineral density compared to the animals that were on the normal diet and were additionaly affected by WBV. We observed the increase of the crystalline phase volume fraction from 84% to 93% (p<0.05) in group with additional whole body vibration and the decrease of the mineral component in rats with limited mobility and high-calorie diet. Therefore, WBV could improve structural conditions of bone and prevent fat accumulation and obesity-associated biochemical markers in obese rats. This can be an effective method to improve the structural and functional state of the bones while preventing the loss of bone mineral density.

Publisher

SE Dnipropetrovsk Medical Academy of Health Ministry of Ukraine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3