Comparative assessment of the effect of titanium dioxide – based nanoparticles on boar germ cells in vitro

Author:

Yavorovsky O.P.ORCID,Zazuliak T.S.ORCID,Ostapiv D.D.ORCID,Riabovol V.M.ORCID,Demetska O.V.ORCID

Abstract

Modern titanium dioxide nanomaterials, in particular modified with nanosilver, have antiviral, antibacterial, antifungal activity, cytotoxic effects in vitro experiments and can affect germ cells of warm-blooded laboratory animals. The research aims to study the effect of different types of titanium dioxide nanoparticles on the physiological and biochemical characteristics of wild boar germ cells in vitro. When applying the maximum dose (LD50) of the studied nanopowders in all samples, sperm survival was probably lower than in the control: by 41.9% (р<0.001) ‒ under the action of TiO2 nanoparticles (hereinafter NPs) (Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, hereinafter IPM), by 28.0% (р<0.05) ‒ under the action of TiO2 NPs (Acros Organics), by 53.5% (р<0.001) ‒ under the action of 4% Ag-TiO2 NPs (IPM) and by 55.9% (р<0.001) ‒ are the action of NPs 8% Ag-TiO2 (IPM). Nanopowders of different based on titanium dioxide manufacturers, characterized by similar morphological characteristics and varying degrees of nanosilver addition (Ag content from 0 to 8%), starting from a dose of 1/10 LD50, can have a damaging effect on the germ cells of wild boars, which is manifested by a decrease in the respiratory activity of sperm and cytochrome oxidase activity, by increasing succinate dehydrogenase activity. The most sensitive marker was the sperm survival rate, the value of which significantly decreased under the action of 8% Ag-TiO2 nanoparticles (IPM) at a dose of 1/100 LD50, which is a consequence of disruption of the activity of mitochondrial enzymes and, accordingly, resynthesis of ATP. Our results confirm and extend the data on the nature of the damaging effect of titanium dioxide-based nanoparticles on germ cells of warm-blooded animals due to oxidative stress. The obtained experimental data will be taken into account in the hygienic regulation of the investigated nanopowders.

Publisher

SE Dnipropetrovsk Medical Academy of Health Ministry of Ukraine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3