Evaluation of the effectiveness of training and the use of neural networks to predict biological age.

Author:

Berezina Tatiana Nikolaevna,Balan Aleksandr,Zimina Al'bina Aleksandrovna

Abstract

Neural network training is widely used in various educational fields: staff training, mastering the curriculum at school and university, forming recommendations for private use by respondents, for teaching pensioners health-saving techniques. It is relevant to analyze the learning process of neural networks and evaluate their effectiveness on various models. For the study, a model was chosen for predicting the index of biological aging of a person based on the characteristics of his personality. To train neural networks, a data matrix of 1,632 people aged 35 to 70 years was compiled. Output variable: biological aging index; input variables: gender, age, family and professional status, place of residence, body type, type of functional asymmetry, style of relationships with people, as well as personal resources. Four neural networks were trained: for men and women, for working professionals and for pensioners. Results: 1) trained neural networks give different recommendations for men and women of pre-retirement and post-retirement age. 2) The effectiveness of predicting the biological aging index using neural networks turned out to be significantly high for all trained programs. 3) Neural networks can be used to model various social situations and identify what changes this will lead to for output variables. Situations were modeled: a) if all single adults get married, b) if all family adults break up, c) if everyone receives the recommendations of psychologists on the selection of personal resources and will use them. The neural network has issued a forecast: it is better for adult women not to change their family status/it is better for adult men to change their status. The use of personal resources selected by psychologists is effective for everyone.

Publisher

Aurora Group, s.r.o

Subject

General Medicine

Reference17 articles.

1. Anokhin K. V., Novoselov K. S., Smirnov S. K. Iskusstvennyi intellekt dlya nauki i nauka dlya iskusstvennogo intellekta / K. V. Anokhin, K. S. Novoselov, S. K. Smirnov [i dr.] // Voprosy filosofii. – 2022. – № 3. – S. 93-105. – DOI 10.21146/0042-8744-2022-3-93-105.

2. Frolov V. A., Feklisov E. D., Trofimov M. A., Voloboi A. G. Sintez izobrazhenii inter'erov dlya obucheniya neirosetei // Preprinty IPM im. M.V. Keldysha. – 2020. – № 81. – S. 1-20. – DOI 10.20948/prepr-2020-81.

3. Kogan, M. S. O vozmozhnom ispol'zovanii neiroseti chatgpt v obuchenii inostrannym yazykam / M. S. Kogan // Inostrannye yazyki v shkole. – 2023. – № 3. – S. 31-38.

4. Grinshkun V. V. Primenenie adaptivnykh testov s neirosetyami v izmerenii rezul'tativnosti obucheniya informatike / V. V. Grinshkun, E. I. Goryushkin // Vestnik MGPU. Seriya: Informatika i informatizatsiya obrazovaniya. – 2007. – № 10. – S. 11-14.

5. Bulygina A. O. Rol' generativnykh neirosetei v obuchenii iskusstvam studentov khudozhestvenno-graficheskikh fakul'tetov / A. O. Bulygina // Problemy sovremennogo pedagogicheskogo obrazovaniya. – 2023. – № 78-3. – S. 44-47.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3