Author:
Zaripova Diana Aleksandrovna,Lukashevich Natal'ya Valentinovna
Abstract
Word Sense Disambiguation (WSD) is a crucial initial step in automatic semantic analysis. It involves selecting the correct sense of an ambiguous word in a given context, which can be challenging even for human annotators. Supervised machine learning models require large datasets with semantic annotation to be effective. However, manual sense labeling can be a costly, labor-intensive, and time-consuming task. Therefore, it is crucial to develop and test automatic and semi-automatic methods of semantic annotation. Information about semantically related words, such as synonyms, hypernyms, hyponyms, and collocations in which the word appears, can be used for these purposes. In this article, we describe our approach to generating a semantically annotated collocation corpus for the Russian language. Our goal was to create a resource that could be used to improve the accuracy of WSD models for Russian. This article outlines the process of generating a semantically annotated collocation corpus for Russian and the principles used to select collocations. To disambiguate words within collocations, semantically related words defined based on RuWordNet are utilized. The same thesaurus is also used as the source of sense inventories. The methods described in the paper yield an F1-score of 80% and help to add approximately 23% of collocations with at least one ambiguous word to the corpus. Automatically generated collocation corpuses with semantic annotation can simplify the preparation of datasets for developing and testing WSD models. These corpuses can also serve as a valuable source of information for knowledge-based WSD models.
Subject
Colloid and Surface Chemistry,Physical and Theoretical Chemistry