Using additive regression models for short-term forecasting of financial macro-indicators and assessing the potential for financing megaprojects

Author:

Kuznetsov Nikolay

Abstract

The subject of this article is the issue of using additive regression models to predict financial indicators at the macro level. At the same time, special attention is paid to the impact of the economy monetization on the possibility of attracting funding for global development projects (megaprojects). It is shown that the main drawback of the most common forecasting models today is their situation-dependent nature. This, in turn, creates difficulties with the initial setup of the models and the subsequent interpretation of the results obtained, limiting the scope of the models, making the use of this toolkit difficult for financial professionals who do not have special mathematical training. With the help of modeling, forecast values of the gross domestic product (GDP) and money supply (M2) for the short-term time obtained, on the basis of which the expected value of the level of the economy monetization was calculated. Based on a predictive assessment of the level of monetization, it is shown that at the moment the country has a limited potential for increasing domestic debt, which, in the conditions of closing access to international capital markets and partial blocking of state reserves, can become a factor in disrupting the financing of megaprojects for the economy structural modernization. Directions for improving the monetary policy aimed at correcting this situation and increasing domestic investment activity are proposed.

Publisher

Aurora Group, s.r.o

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference22 articles.

1. Vertakova Yu.V. Obzor ekonomicheskikh podkhodov i modelei dlya prognozirovaniya VVP // Ekonomika i upravlenie. 2016. № 2 (124). S. 22–29.

2. Abdikeev N.M., Pashchenko F.F., Gusev V.B., Ivanyuk V.A., Grineva N.V., Kuznetsov N.V., Malikova O.I., Kuznetsov V.I. Modelirovanie dolgosrochnogo sotsial'no-ekonomicheskogo razvitiya Rossii. M.: KnoRus, 2019. 218 s.

3. Liu H., Chan W.S. Forecasting the GDP Growth Rate Using Mixed-Frequency Data // International Journal of Forecasting. 2019. No. 35(3). Pp. 1002–1015.

4. Matrosov V.V., Shalfeev V.D., Modelirovanie ekonomicheskikh i finansovykh tsiklov: generatsiya i sinkhronizatsiya // Izvestiya vuzov. 2021. Tom 29. Vyp. 4. S. 515–537.

5. Prognozirovanie i model'nyi apparat // Tsentral'nyi bank Rossiiskoi Federatsii. [Elektronnyi resurs]. URL: http://www.cbr.ru/dkp/system_p/ (data obrashcheniya: 21.07.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3