Improving the quality of the forecast through methods of combining forecasts

Author:

Rusanov Mikhail A.,Shergin Sergey N.,Tatjankin Vitaliy M.

Abstract

Subject of research: The article is devoted to the comparison of forecasting methods and methods of combining forecasts when forecasting average monthly wages for some regions of the Russian Federation for the period from January 2013 to July 2022. Purpose of the study: To test the hypothesis of improving forecast quality through forecast pooling methods. Methods and objects of research: Time series of average monthly wages in the Khanty-Mansi Autonomous Okrug Yugra, Yamal-Nenets Autonomous Okrug and Sverdlovsk region are used to compare forecasting methods and methods of combining forecasts. The paper considers forecasting methods: TBATS, ARIMA, exponential smoothing, ETS, Theta, STL, polynomial regression and the approach in combining forecasts by the Granger-Ramanathan method. Main results of research: The paper presents the results of comparison of forecasting methods and approach in combining forecasts by Granger-Ramanathan method. Time series of average monthly wages were taken from statistical collections of Rosstat. The forecast horizon was set at 12, 18 and 24 points. The Granger-Ramanathan method showed that in most cases it is possible to improve the quality of the forecast by combining private forecasts.

Publisher

Yugra State University

Reference17 articles.

1. Stock Market Forecasting Based on Text Mining Technology: A Support Vector Machine Method

2. Tilly, S. Macroeconomic forecasting with statistically validated knowledge graphs / S. Tilly, G. Livan. – URL: https://arxiv.org/pdf/2104.10457.pdf (date of application: 08.12.2022).

3. Wang, X. Forecast combinations: an over 50-year review / X. Wang, B.J. Hyndman, F. Li, Y. Kang. – URL: https://arxiv.org/pdf/2205.04216.pdf (date of application: 08.12.2022).

4. The M4 Competition: 100,000 time series and 61 forecasting methods

5. Макридакис Соревнования – Makridakis Competitions // Интернет-ресурс wiki. – URL: https://wikicsu.ru/wiki/Makridakis_Competitions (дата обращения 08.12.2022). – Текст : электронный.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3