Abstract
The minimax identity for a nondecreasing upper-semicontinuous utility function satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of the utility function is not asumed. By considering the concave envelope of the utility function, equalities and inequalities between the robust utility functionals of an initial utility function and its concavification are obtained. Furthermore, similar equalities and inequalities are proved in the case of implementing an upper bound on the final endowment of the initial model.
Subject
Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability