Abstract
The purpose of this paper is to explore two probability distributions originating from the Kies distribution defined on an arbitrary domain. The first one describes the minimum of several Kies random variables whereas the second one is for their maximum – they are named min- and max-Kies, respectively. The properties of the min-Kies distribution are studied in details, and later some duality arguments are used to examine the max variant. Also the saturations in the Hausdorff sense are investigated. Some numerical experiments are provided.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献