Magnetic Field Effects on Aqueous Anionic and Cationic Surfactant Solutions Part I: Water Evaporation

Author:

Chibowski Emil1,Szcześ Aleksandra1

Affiliation:

1. Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland

Abstract

Static magnetic field (0.5 T) effects on water evaporation rate from anionic Sodium Dodecyl Sulfate (SDS) and cationic Dodecyl Trimethyl ammonium Bromide (DoTAB) 1 mM solutions were studied at room temperature and humidity for up to several hours. Keeping in mind possible practical application of the effects the experiments were intentionally carried out in a common laboratory environment and not in any sophisticated conditions. The evaporation of water from Magnetic Field (MF) treated and untreated samples were carried out simultaneously in the same environment. Although the quantitative differences in the evaporated amounts of water between MF treated and untreated samples changed from run to run, the qualitative MF effects were always reproducible. Therefore, it is believed that the observed changes are significant. It was found that the MF affects evaporation rate of water from solutions of both surfactants causing increase in the evaporated water amount in comparison to that of MF untreated sample. Prior to MF experiments first the water evaporation rate from the untreated surfactants solutions was studied. From the MF-untreated anionic surfactant solution water evaporated slower than from pure water, while from the cationic one water evaporated faster than from pure water. This difference was explained taking into account the properties of the polar (ionic) head of the surfactants, i.e. their size, ability to hydrogen bonding formation with water molecules, and the reduction of water surface tension. The MF treatment caused an increase in the evaporated water amount from both surfactants. However, a greater effect was observed for cationic DoTAB. Because the hydrocarbon tail in both surfactants is the same (C12) the observed differences were assigned to the differences in their ionic heads. Gibbs adsorption equation and Lorentz force in the gradient MF were applied to explain the differences.

Publisher

Edelweiss Publications Inc

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3