Alkaline Wood Ash, Turbulence, and Traps with Excess of Sulfuric Acid Do Not Strip Completely the Ammonia off an Agro-waste Digestate

Author:

Moure Abelenda Alejandro1,Semple Kirk T2,Lag-Brotons Alfonso Jose2,Herbert Ben MJ3,Aggidis George1,Aiouache Farid1

Affiliation:

1. Department of Engineering, Lancaster University, UK

2. Lancaster Environment Centre, Lancaster University, UK

3. Stopford Projects Ltd, Lancaster Environmental Centre, Lancaster University, UK

Abstract

The present study combined two nutrient management strategies to improve the marketability of a waste-derived fertilizer: (a) isolation of ammoniacal nitrogen and (b) preparation of a bulk soil amendment. The wood fly ash with low content of pollutants was added to an agrowaste anaerobic digestate as alkaline stabilizer, which promoted the volatilization of ammonia and adsorption processes, and as nutrient supplement. The 39.71 ± 1.44 g blend was incubated for 60 hours at 20°C and 100 rpm in a closed chamber (250-mL Schott Duran® bottle) with a 5.21 ± 0.10 mL sulfuric acid trap of 10 different concentrations (0.11, 0.21, 0.32, 0.43, 0.54, 0.64, 0.75, 0.86, 0.96, and 1.07 mol/L). For analytical purposes, the sulfuric acid, water-soluble, and water-insoluble fractions of the blend were isolated after the incubation. The 1.07 mol/L sulfuric acid solution contained 23.69 ± 5.72 % more of ammonical nitrogen than the 0.11 mol/L solutions. However, in all cases the amount of nitrogen in the H2SO4 compartment was lower than the one in the water-soluble and water-insoluble fractions. Only the 15.52 ± 2.13 % of the nitrogen accounted after the incubation was found in the H2SO4 trap. The bottleneck of the NH3 stripping process was the rate of mass transfer at the interface between the blended fertilizer and the headspace of the closed chamber. The organic phosphorus was more susceptible to be adsorbed during the alkaline treatment with non-intrusive acidification than the nitrogen and carbon. Activation of the ash as adsorbent before mixing with the digestate should improve the properties of the blend as slow release fertilizer, since more nutrients would end in the water-insoluble fraction.

Publisher

Edelweiss Publications Inc

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3