Drug Release Studies of SC-514 PLGA Nanoparticles

Author:

Toluleke Oloruntobi Famuyiwa1,Zoey Bowers1,Austin Bentley2,Davian Caraballo1,Paulynice Subtil1,James Kwasi Kumi Diaka1,Waseem Asghar2

Affiliation:

1. Department of Biological Sciences, Florida Atlantic University, USA

2. Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, USA

Abstract

A major problem associated with prostate cancer treatment is the development of drug resistance. The development of drug resistance often leads to prostate cancer metastasis and prostate cancer-targeted drug delivery systems can be utilized to address this problem. Traditional drug delivery systems have many challenges, including the inability to control the drug release rate, target site inaccuracy, susceptibility to the microenvironment, poor drug solubility, and cytotoxicity of chemotherapeutics to non-malignant cells. As a result, there is an urgent need to formulate and functionalize a drug delivery system that better controls drug release. This study was designed to quantify the release of SC-514 from SC-514 Polylactic-Co-Glycolic Acid (PLGA) nanoparticles and conjugate SC-514-PLGA coated nanoparticles with the NF- κβ antibody, as well as fats. This study further explored new methods to quantify the release of SC-514 drug from the SC-514-PLGA coated nanoparticles after utilizing Liquid Chromatography–Mass Spectrometry (LC-MS) as the standard method to quantify SC-514 drug released. After quantification was completed, cell viability studies indicated that the ligand conjugated nanoparticles demonstrated a considerable ability to reduce tumor growth and SC-514 drug toxicity in the PC-3 cell line. The prepared drug delivery systems also possessed a significantly lower toxicity (P<0.05), bettered controlled-release behaviors in prostate cancer, and increased the solubility of SC-514 in comparison to free SC-514. SC-514 released from SC-514-PLGA, SC-514-PLGA-NF- κβAb, and SC-514-PLGA-Fat nanoparticles, significantly inhibited tumor growth when compared to that of free SC-514. The anti-cancer therapeutic effects of SC-514 were improved through the encapsulation of SC-514 with a PLGA polymer. The functionalized SC-514-PLGA nanoparticles can further control burst release. The new methods utilized in this study for quantifying drug release, may prove to be as effective as the current standard methods, such as LC/MS.

Publisher

Edelweiss Publications Inc

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3