NUMERICAL SIMULATION OF SECONDARY CIRCULATION IN THE LEE OF HEADLANDS

Author:

Falconer Roger A.,Wolanski Eric,Mardapitta-Hadjipandeli Lida

Abstract

The paper gives details of a study to refine and further develop a two-diirensional depth average numerical model to predict more accurately the eddy shedding features often observed in the lees of headlands. Details are given of the application of the model to Rattray Island, just east of Bowen, North Queensland, Australia, where the strong tidal currents flowing past the island give rise to separation and hydrodynamic circulation in the lee of the island. In the governing differential equations used to predict the secondary circulation, particular emphasis has been placed on the representation of the shear stresses associated with the free shear lateral mixing layer in the downstream wake of the headland. Use of an experimentally determined lateral velocity distribution in the shear layer, together with an eddy viscosity approach, have led to the use of a relatively simple turbulence model, including both free shear layer and bed generated turbulence. A comparison of the numerically predicted velocities with corresponding field measured results around Rattray Island has shown an encouraging agreement, although there were some differences. The main difference between both sets of results was that the vorticity strength of the secondary circulation predicted in the numerical model was noticeably less than that measured in the field.

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Tidal Circulation in an Island's Wake;Journal of Waterway, Port, Coastal, and Ocean Engineering;1986-03

2. Water circulation in a topographically complex environment;Physics of Shallow Estuaries and Bays;1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3