STABILITY OF COASTAL INLETS

Author:

Bruun P.,Gerritsen F.

Abstract

This paper is a continuation of papers of earlier date (4) and (5) and is an abstract of (6). Pertinent factors involved in inlet stability are discussed briefly. Results of analysis of existing data are mentioned and a future research program is outlined. In order to obtain a stable tidal inlet in alluvial material it appears to be an inevitable assumption that littoral drift material is being supplied continuously to the inlet. Part of this material is deposited on the inlet bottom where the tidal currents will move it forward and back as a kind of "rolling carpet." In order to obtain a relatively stable situation this carpet must not move back and forth too rapidly since it thus runs the risk of being lost at both ends (the ocean and the bay). Nor can it be allowed to move too irregularly, changing its velocity and travel time rapidly, since it may soon "get stuck" at one or at both ends in the form of excessive deposits. If — because of insufficient littoral drift supply -- inadequate amount of material is available for building up this carpet the inlet will be constantly "shaved" and will gradually develop non-scouring open bay or perhaps estuary characteristics. Fig. 1 shows longitudinal sections through inlets of different length. In the first case the (unstable) channel is so short that the rolling carpet extends outside the inlet floor, which in turn causes material to be deposited on shoals in the sea and in the bay by the material-loaded ebb and flood currents. In the second case the (also unstable) channel is so long that material is now deposited inside both ends of the inlet channel because it gradually became so long that currents were too slow to carry the material load out in the sea or in the bay for depositing. The third case demonstrates a stable "status quo" situation between inlet length, current velocities, and material load.

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3