WAVE - INDUCED DEVICES FOR THE OXYGENATION OF DEEP LAYER: A PHYSICAL INVESTIGATION

Author:

Antonini Alessandro,Gaeta Maria Gabriella,Lamberti Alberto

Abstract

No other environmental variable of ecological importance to estuarine and coastal marine ecosystems around the world has changed so drastically, in such a short period of time, as dissolved oxygen. Coastal surveys in United States and Europe found that a staggering 78 % of the assessed continental U.S. coastal area and approximately 65 % of Europe’s Atlantic coast exhibit symptoms of eutrophication. The 65 % of the coasts counted by Diaz does not take into account inland seas like the Adriatic or Baltic Seas but also for these, eutrophication and consequently anoxia are common problems. In the present study a simple and economic device is proposed to enhance vertical mixing processes and to induce aeration of deep water by pumping of oxygen-rich surface water downwards to a desired depth around the halocline. The hydrodynamic parameters of the device are estimated through free oscillation tests. Preliminary values of the downward water flux velocity inside the device and the movements of the floater under the action of 4 regular waves, characterizing of the wave climate in the Nord Adriatic Sea, are estimated.

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3