BED SHEAR STRESS IN UNSTEADY FLOW

Author:

Guard Paul Andrew,Nielsen Peter,Baldock Tom E

Abstract

Standard engineering methods of estimating bed shear stress using friction factors can fail spectacularly in unsteady hydrodynamic conditions. This paper demonstrates this fact using direct measurements of bed shear stresses under irregular waves using a shear plate apparatus. The measurements are explained in terms of the influence of the horizontal pressure gradient and the shear stresses acting on the surface of the plate. The horizontal fluid velocity at the edge of the boundary layer and the water surface elevation and slope were also measured. The paper demonstrates that the water surface measurements can be used to obtain accurate estimates of the forces on the bed, by employing Fourier analysis techniques or an innovative convolution integral method. The experimental results indicate that an offshore bed shear stress may be recorded while the free stream velocity remains onshore at all times. This demonstrates the failure of the standard engineering friction factor method in this scenario, since negative friction factors would be required. Important questions are raised regarding the appropriate definition for the bed shear stress when the vertical gradient of the shear stress is large. It is shown that it is problematic to define a single value for a “bed” shear stress in the presence of a strong horizontal pressure gradient. It is also argued that the natural driver for any model used to predict bed shear stress is the pressure gradient (or its proxy the free stream acceleration), rather than the velocity. This allows for accurate calculation of both acceleration effects (more rapid acceleration leads to a thinner boundary layer and higher shear stress) and also the direct action of the horizontal pressure gradient.

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3