Abstract
Bu çalışmada, makine öğrenme teknikleri kullanılarak içi beton dolu dairesel kesitli çelik boruların (BDÇK) basınç altındaki nihai eksenel yük kapasiteleri tahmin edilmiştir. BDÇK kolonlar hem eksenel yükler, hem de yatay yükler altındaki performanslarından dolayı yapılarda çok tercih edilmektedirler. Bunun başlıca nedeni betonun ve çeliğin süneklilik ve rijitlik özelliklerinden kaynaklanmaktadır. Özellikle deprem etkisi altındaki yapısal elemanların davranışı yapının toptan davranışını etkilemektedir. Yapısal elemanların yük taşıma kapasitesinin makine öğrenme yöntemleri kullanılarak değerlendirilmesi araştırmacılar arasında oldukça popüler hale gelmiştir. Bu çalışma ile eksenel yük etkisi altındaki BDÇK kolonların eksenel yük kapasitesi yapay sinir ağları (YSA) ve rassal orman (RO) makine öğrenme yöntemleri kullanılarak tahmin edilmeye çalışılmış ve literatürdeki deney sonuçları ile karşılaştırılmıştır. Kapasite tahmini için literatürdeki 215 deney sonucu kullanılarak makine öğrenme yöntemleri arasında kıyaslama yapılmış, karşılaştırma sonucunda RO yönteminin daha iyi sonuç verdiği görülmüştür.
Publisher
Muhendislik Bilimleri ve Tasarim Dergisi
Subject
Colloid and Surface Chemistry,Physical and Theoretical Chemistry