PREDICTION OF AXIAL LOAD CAPACITY OF CONCRETE-FILLED STEEL TUBES WITH CIRCULAR SECTIONS UNDER AXIAL LOAD BY USING ARTIFICIAL NEURAL NETWORKS AND RANDOM FOREST METHODS

Author:

COSGUN CumhurORCID

Abstract

Bu çalışmada, makine öğrenme teknikleri kullanılarak içi beton dolu dairesel kesitli çelik boruların (BDÇK) basınç altındaki nihai eksenel yük kapasiteleri tahmin edilmiştir. BDÇK kolonlar hem eksenel yükler, hem de yatay yükler altındaki performanslarından dolayı yapılarda çok tercih edilmektedirler. Bunun başlıca nedeni betonun ve çeliğin süneklilik ve rijitlik özelliklerinden kaynaklanmaktadır. Özellikle deprem etkisi altındaki yapısal elemanların davranışı yapının toptan davranışını etkilemektedir. Yapısal elemanların yük taşıma kapasitesinin makine öğrenme yöntemleri kullanılarak değerlendirilmesi araştırmacılar arasında oldukça popüler hale gelmiştir. Bu çalışma ile eksenel yük etkisi altındaki BDÇK kolonların eksenel yük kapasitesi yapay sinir ağları (YSA) ve rassal orman (RO) makine öğrenme yöntemleri kullanılarak tahmin edilmeye çalışılmış ve literatürdeki deney sonuçları ile karşılaştırılmıştır. Kapasite tahmini için literatürdeki 215 deney sonucu kullanılarak makine öğrenme yöntemleri arasında kıyaslama yapılmış, karşılaştırma sonucunda RO yönteminin daha iyi sonuç verdiği görülmüştür.

Publisher

Muhendislik Bilimleri ve Tasarim Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3